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tured abalone in the world, with 23,061 tons produced in 2021 

(KOSIS, 2022). Abalones are also cultured in southern Korea, 
particularly in the coastal waters of the Jeonnam provinces, 
where Haliotis discus hannai is the most common species. 
These sites, however, often undergo high energy conditions 
such as strong oceanic currents and irregular waves, especially 
during typhoon events (Kim and Oh, 2016). Therefore, the use 
of numerical models to produce accurate results with a high 
degree of confidence is necessary to reduce the risk of system 
failures.

In the past 20 years, many numerical approaches have been 
developed to simulate the dynamics associated with marine 
aquaculture installations. For example, Gignoux and Messier 

(1999) applied a commercially available finite element (FE) 
program to study fish cage dynamics in simulated waves. 
Lader and Fredheim (2006) introduced a “super element” to 
represent both hydrodynamic and structural forces on a net 
panel. In a series of publications, Huang et al. (2006, 2016, 
2018) performed both numerical and modeling tests to ana-
lyze net cage structures. Furthermore, Zhao and collabora-

Introduction

With the rising demand for sustainable seafood sources, 
aquaculture structures designed for energetic marine environ-
ments are becoming increasingly important. Unlike the off-
shore oil and gas industry, the seafood industry does not have 
the same level of capital resources to invest in engineering  
design. In response to these limitations, the efficient use of 
computer modeling techniques coupled with practical experi-
ence would greatly contribute to the design of suitable struc-
tures to substantially increase aquaculture production. How-
ever, the strengths and limitations of computer models must 
be understood, as adopting a black-box approach could render 
analysis results that might lead to structural failure. 

Aquaculture systems have recently been developed for rais-
ing Pacific abalone (Haliotis discus hannai). This species is a 
valuable product that is commercially available in the Republic  
of Korea. Commercial-scale abalone production in Korea began  
in 2000 after several years of research and development, and 
the country is currently the second-largest producer of cul-
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Abstract : In this study, a floating abalone farm system is analyzed using numerical 
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tors conducted extensive studies of drag and inertia forces on 
net panels and fish cages through numerical simulations and  
experimental studies [e.g., Zhao et al. (2007, 2008), Dong 
et al. (2010), Bi et al. (2014, 2018)]. Berstad and Tronstad 

(2005) discussed the use of custom-designed simulation soft-
ware for the hydrodynamic analysis of fish farms. Nicoll et 
al. (2011) used a custom-developed FE solver for the analysis 
of flexible systems with multi-body interaction in the marine  
environment, as well as to study the dynamic response of fin-
fish farms under various loading scenarios. Studies have also 
focused on engineering analyses of the hydrodynamic forces 
and structural strength of abalone cage system (Kim et al., 
2014, 2018). 

Moreover, Berstad and Heimstad (2019) and Tsarau and 
Kristiansen (2019) have recently reported breakthroughs in 
the development of the FE software packages AquaSim and 
FhSim, respectively, for modeling fish farm systems.

The development of abalone aquaculture technology for 
the open ocean requires a rigorous engineering approach if 
structures are to maintain integrity when subjected to strong 
storms. The engineering approach should include a combina-
tion of physical model tests, field experience and numerical 
model simulations. Physical models have been used exten-
sively for comparison purposes as described, for example, in 
Fredriksson et al. (2003) and DeCew et al. (2005). Field and 
operational experience is also an important component of the 
design process to make sure that solutions make sense and 
therefore practical. 

Numerical models are perhaps the most versatile of the 
engineering design tools since a wide range of concepts and 
environmental conditions can be considered in a timely fash-
ion. The objective of this study is to perform a set of numer-
ical model simulations of a traditional, floating abalone farm 
to determine hydrodynamic loads and critical stresses of the 
floating abalone farm structure. 

 

Materials and Methods

1. Abalone containment structure

The application of the model involved the representation 
of a traditional abalone cage design employed in the wa-
ters of Wando in Korea as shown in Fig. 1a and 1b. In gen-
eral, the abalone containment structure is 24.5 m long and 
12.5 m wide and consists of long members of high-density 
polyethylene (HDPE) pipe with an outer diameter of 0.11 

m. The HDPE pipes are configured as square walkways 
with a width of 0.5 m. The particular system analyzed was 
deployed in a depth of about 15 m with a bottom sediment 

type of sandy-mud. The cross members of pipe are pinned 
with galvanized steel bolts at each of the corners in four 
locations. Buoyancy is provided with 2 × 0.5 m Styrofoam 
floats strapped to the HDPE pipe with rope. Within each of 
the squares, polyethylene nets (Td 380 × 60 ply) with a half-
mesh size (w1/2) of 30.3 mm and a twine diameter (td) of 2.6 
mm, are suspended from the walkways. Twelve stacks of ab-
alone shelters are placed within each of the squares (Fig. 1b). 
Mooring lines are attached to the HDPE pipe. The relatively 
simple system has been known to fail when exposed to ty-
phoon like storms in the region. 

2. Loading conditions

The environmental conditions for which the structure anal-
ysis was conducted included combinations of waves and cur-
rents. The spectrum applied in the model was a form of the 
Joint North Sea Wave Project (JONSWAP) spectrum (Hassel-
man et al., 1973) described in Isherwood (1987) as
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The wave spectral shape was then determined with σa = 0.07, 
σb = 0.09 and γ = 1. For the simulations presented here, a sig-
nificant wave height (Hs) and dominant period (Tp) of 5.7 m 
and 10.93 s were used respectively. These values were chosen  
according to the design wave conditions for the vicinity of 
Wando, Korea over a 10-year return period (http://www.kiost. 
ac). The corresponding spectral shape is shown in Fig. 2. 
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where Vf and Vb are the velocity magnitude values at the ver-
tical locations of zf = 0 (surface) and zb = 15 m, respectively. 
In this application, an exponent value equal to 3 was applied. 
Load cases for the model included the two abalone farm 
orientations as shown in Fig. 3. Load case #1 in Fig. 3 has a 
wave and current orientation normal to the smaller dimen-
sion of the farm, while load case #2 has a wave and current 
orientation normal to the larger dimension of the farm. Sim-
ulations were performed with the numerical model to assess 
the hydrodynamic loads on the system, mooring line tensions 
and structural stresses in the floating abalone farm structure. 
Load cases included combinations of JONSWAP irregular 
waves and steady currents and consisted of (1) currents ap-
plied according to equation (5), (2) irregular waves described 

by equations (1)~(4), and (3) a superimposed combination 
of load cases (1) and (2). 

3. Numerical model and structure

1) Numerical model

The model performs hydrodynamic simulations using a 
commercial general-purpose, finite element (FE) solver. The 
environmental forces (buoyancy, drag and inertia) are calcu-
lated using a user-defined force subroutine based on a modi-
fied Morison equation (Morison et al., 1950), 
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and a Tp = 10.93 s. 
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In equation (6), is the fluid force per unit length, and are 
the normal and tangential components of the fluid particle 
velocity relative to the element velocity, is the normal com-
ponent of absolute fluid particle acceleration, is the normal 
component of the fluid particle acceleration relative to the 
element acceleration. Also in equation (6), kg m-3 is the 
water density, is the diameter of the cylinder, is the external 
cross-sectional area (i.e. the same water-tight cross-sectional 
area as used for buoyancy calculations), is the normal drag 
coefficient, is the tangential drag coefficient and is the add-
ed mass coefficient. Fluid particle velocity and acceleration 
fields are calculated using the linear wave theory described 
in Dean and Dalrymple (1991). For the case of irregular seas, 
the profile can be approximated using the linear superposi-
tion of waves,
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where Hi are the wave heights, ki are the wave numbers, x is the horizontal position 

with respect to the origin, fi are the wave frequencies and θi are the random phase 

components. Even though the present approach does not account for surface effects for 

the bodies floating at the waterline, effect of partial submergence is considered by 

evaluating the submerged volume fraction. This parameter is used as a multiplier for 

buoyancy, drag and inertial forces, thus gradually accounting to transition from the dry 

to submerged states. 

2.3.2. Geometric and material properties

  An important component of the procedure was the appropriate use geometric and 

material properties as provided in Table 1. With the geometric and material properties, 

the numerical model of the abalone farm system was constructed with truss and beam 

elements. As shown in Fig. 4a, beam elements were used for the Styrofoam flotation, 

HDPE pipe and the galvanized steel bolts. Flexible connectors such as the rope, nets 

and mooring components were modeled as trusses. The walkways shown in Fig. 4a 

lashed to the HDPE were not modeled because it was assumed that these plastic sheets 

do not affect structural response of the system. It should be noted that even though 

presence of abalone shelters within the containment nets would significantly increase the 

drag on the system, these components were excluded from the analysis in this study. 

Anchoring locations on the seafloor bottom were modeled as fixed points.

  In the model, the abalone cage system was secured by 8 mooring legs in the 

positions shown in Fig. 4b. In 15 m of water and at an approximate scope of 3:1, each 

leg consisted of 45 m of 48 mm rope. At the corners, anchor legs extended out 45 
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where Hi are the wave heights, ki are the wave numbers, x is 
the horizontal position with respect to the origin, fi are the 
wave frequencies and θi are the random phase components. 
Even though the present approach does not account for sur-
face effects for the bodies floating at the waterline, effect 
of partial submergence is considered by evaluating the sub-
merged volume fraction. This parameter is used as a multi-
plier for buoyancy, drag and inertial forces, thus gradually 
accounting to transition from the dry to submerged states. 

2) Geometric and material properties

An important component of the procedure was the appro-
priate use geometric and material properties as provided in 
Table 1. With the geometric and material properties, the nu-
merical model of the abalone farm system was constructed 
with truss and beam elements. As shown in Fig. 4a, beam 
elements were used for the Styrofoam flotation, HDPE pipe 
and the galvanized steel bolts. Flexible connectors such as 
the rope, nets and mooring components were modeled as 
trusses. The walkways shown in Fig. 4a lashed to the HDPE 
were not modeled because it was assumed that these plas-
tic sheets do not affect structural response of the system. It 
should be noted that even though presence of abalone shel-
ters within the containment nets would significantly increase 
the drag on the system, these components were excluded 
from the analysis in this study. Anchoring locations on the 
seafloor bottom were modeled as fixed points.

In the model, the abalone cage system was secured by 8 
mooring legs in the positions shown in Fig. 4b. In 15 m of 
water and at an approximate scope of 3 : 1, each leg consisted 
of 45 m of 48 mm rope. At the corners, anchor legs extended 

out 45 degrees. Anchor points were modeled as fixed points 
with no chain catenaries. 

The net of an aquaculture structure is one of the most 
dominant features of the entire system. It is typically com-
pliant undergoing large displacements in storm conditions 
and induces a substantial component of total loading due to 
fluid-structure interactions. Building a numerical representa-
tion of the net, however, is not trivial requiring accurate geo-
metric and material properties (Moe et al., 2007) and specific 

Table 1. Geometric and material properties used in each modeling 
approach

Component Element Parameter Value

Pipe 02-pipes

Diameter 114 mm

DR rating 17

Material HDPE

Mass density 950 kg/m3

Floats 03-floats

Length 2 m

Diameter 0.5 m

Material Styrofoam

Mass density 300 kg/m3

Bolts 04-bolts

Length 0.125 m

Diameter 50 mm

Material Steel

Mass density 7870 kg/m3

Float 
rope

05-float rope

Length 0.707 m

Diameter 42 mm

Material Polypropylene

Mass density 1100 kg/m3

Net
06-net-side

07-net-bottom

Twine diameter 2.6 mm

Half-mesh 30.3 mm

Ply 60

Material Polyethylene

Mass density 1485 kg/m3

Net 
connectors

08-net-connectors

Length 2.46 m

Diameter 12 mm

Material Polypropylene

Mass density 1100 kg/m3

Net 
weights

09-net-weights

Not analyzed

Material Concrete

Mass in air 15 kg

Number per chamber 4

Shape Cylinder

Mass density 2400 kg/m3

Mooring 
lines

10-mooring-lines

Diameter 48 mm

Length 45

Material Polypropylene

Mass density 1100 kg/m3
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With the outline area, solidity and twine diameter, the total 
length of the twine in the panel was then estimated. A new 
parameter called net length-ratio is defined as total twine 
length divided by the total net element length created in the 
model. An equivalent twine cross-sectional area was deter-
mined by setting the material volume of the model net equal 
to that of the actual net multiplied by the length-ratio (i.e. 
consistent mass/volume representation). Having equal vol-
umes, bulk net panel properties including weight, buoyancy, 
and inertia with added mass are matched in each model. With 

the same volume, however, the projected area of the panel 
was less than that of the actual net. To match drag forces, the 
equivalent diameter is calculated as actual twine diameter 
multiplied by the net length-ratio. 

Prescribing an appropriate drag coefficient for netting was 
also necessary and has been the topic of numerous studies. 
A review of much of this work can be found in Tsukrov et 
al. (2011). For example, previous approaches have utilized 
drag coefficients that are updated at every time step based on 
Reynolds number (Choc and Casarella, 1971; DeCew et al., 

Fig. 4. (a) The numerical model construction of the traditional abalone 
farm structure, (b) The eight mooring leg locations and a plan view of 
the numerical model of the traditional abalone grow out system.

(a)

(b)

Fig. 5. Suspended net construction in the numerical model.

Fig. 6. (a) Net shadowing configuration for load case #1, (b) Net sha- 
dowing configuration of load case #2.

(a)

(b)
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2010) or empirical forms described in Milne (1972), Aarnse 
et al. (1990), Zhan et al. (2006) and Balash et al. (2009). The 
approach taken in this study is from Tsukrov et al. (2011) 
with a nominal value of 1.4 considering nearly all of the 
sources presented. It was also discussed in this paper that 
drag coefficient values did not exhibit a strong dependence 
on Reynolds number or solidity. In addition to the drag coef-
ficient, the added mass coefficient is also used in the inertia 
terms of the Morison equation shown by equation (6). For 
this application, a standard value of 1 was utilized consistent 
for submerged circular cylinders.

An important aspect of the modeling configuration is the 
reduction of mean horizontal velocities due to turbulence 
induced by the nets often referred to net shadowing. In gen-
eral, the magnitude of the velocity is reduced as a function of 
net solidity. Flow reduction within the model, however, was 
represented as a function of cage row for each orientation as 
shown on Fig. 6a and 6b. In the calculations, a reduction val-
ue of 15% was applied through each cage row according to 
the work described in Aarnses et al. (1990). 

4. Structural analysis of integrity of pipes

Since the anchors were modeled as fixed points, the cor-
responding structural response of the individual components 
of the farm could then be analyzed as if the anchors held. 
As a reporting result, an extensive amount of data was pro-
duced from the six simulations. For seven of the eight ele-
ment types provided in Table 1, engineering parameters were 
calculated. The engineering parameter for the truss elements 
was axial force (kN). 

Since the model shown in Figs. 4~6 has nearly 43,000 
elements, to perform the data processing procedure and ex-
amine the results, code was written to organize the calculat-
ed data sets into the seven element types. If the element was 
configured as a beam, the data set was further organized into 
the six engineering parameters listed above. If the element 
was configured as a truss, then only the tension was stored 

(i.e. positive axial force). The information in each of these 
files was then sorted from the largest positive number to the 
corresponding negative number (direction related).

 
1) Maximum equivalent stress calculations

The integrity of the HDPE pipe supporting the structure 
was analyzed by processing the result files of the model 
simulations. Using a Python script, values of axial force (F), 
bending moment (Mx) bending moment (My) and torque (T) 
were collected from the model simulations for all beam ele-
ments comprising the HDPE pipes. The value of equivalent 

(von Mises) stress was then calculated for every integration 

point of HDPE pipe beam elements.
The general expression of the equivalent stress in the Car-

tesian coordinate system is
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where  is the area of the pipe’s cross-section,  is the outer radius of the pipe,  is 
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(10)

where A is the area of the pipe’s cross-section, r0 is the outer 
radius of the pipe, Ixx is the second moment of the cross-sec-
tional area of the pipe around x-axis, and Jxy is the polar  
moment of the cross-sectional area around the center. For the 
given pipe with r0 = 0.0625 m, internal radius ri = 0.0510 m 
and wall thickness t = 0.0115 m. 

In thin-walled pipes, in the absence of the internal pressure 
the components σrr and σθθ are zero. The shear components 
σθz and σzr can be neglected since they are zero near the sur-
face part of the pipe under theses loading conditions. The  
final expression for the equivalent stress reduces to
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where σzz= σF
zz+ σM

zz is the combination of normal stresses 
due to axial force and bending moments, and σrθ is the shear 
force due to applied torque. The normal stresses σF

zz and σM
zz, 

and shear stress σrθ are found as
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where A is the area of the pipe’s cross-section, r0 is the outer 
radius of the pipe, Ixx is the second moment of the cross-sec-
tional area of the pipe around x-axis, and Jxy is the polar mo-
ment of the cross-sectional area around the center. For the 
given pipe with r0 = 0.0625 m, internal radius ri = 0.0510 m 
and wall thickness t = 0.0115 m, 

A = 41.01·10-4 m2, Ixx = 6.67·10-6 m4, Jxy = 13.34·10-6 m4.

2) Stress calculations using finite element analysis 

In addition to the analytical predictions of the maximum 
equivalent stress, finite element analysis of a pipe was per-
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Fig. 4. (a) The numerical model construction of the traditional abalone farm 

structure, (b) The eight mooring leg locations and a plan view of the numerical 

model of the traditional abalone grow out system.

  The net of an aquaculture structure is one of the most dominant features of the entire 

system. It is typically compliant undergoing large displacements in storm conditions and 

induces a substantial component of total loading due to fluid-structure interactions. 

Building a numerical representation of the net, however, is not trivial requiring accurate 

geometric and material properties (Moe et al., 2007) and specific modeling approaches 

(Tsukrov et al., 2003 and Fredriksson et al., 2014). 

  It is also computationally expensive to account for every twine of the construction (a 

typical net can be comprised of approximately 100 twines with about 2500 intersections 

per m2). The net needs to be simplified in such a way that the fluid loads are 

redistributed on a simplified mesh and the representative behaviors of the net panels are 

not compromised. The net modeling technique considered for both the model is based 

on the “consistent net element” approach of Tsukrov et al. (2003). By knowing the 

half-mesh width (w1/2 = 30.3 mm) and the twine diameter (td = 2.6 mm), the solidity 

(S) of the net was calculated according to

  
   .                                                           (8)

With the outline area, solidity and twine diameter, the total length of the twine in the 
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positive axial force). The information in each of these files was then sorted from the 

largest positive number to the corresponding negative number (direction related).
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bending moment () bending moment () and torque () were collected from the 
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pipe beam elements.
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formed subjected to forces and moments that corresponding 
to the highest value of σeq. After performing mesh sensitivity 
studies, the FE model was generated using 7,488 quadratic 
20-node hexagonal elements. The model diagram illustrating 
boundary conditions used in the model is shown in Fig. 7.

Results and Discussion

1. Motions and anchor leg tensions

The results of the six model simulations were analyzed for 
mooring leg tensions, vertical displacements of the forward 
and aft points on the surface structure and local engineering 
parameters for the structural components. The points and 
mooring locations are shown in Fig. 8a and 8b for load case 
#1 and #2, respectively.

The vertical displacement results for the forward and aft 
points were investigated for the waves only case for each 
load case direction. The time series results for the forward 
and aft points are shown in Fig. 9 for load case #1 and #2. 
The basic statistics including the maximum, minimum and 
standard deviation for each of the time series are provided in 
Table 2. The significant response values defined as four times 
the square root of the variance divided by significant wave 
height of the spectrum is also provided in Table 2.

The tensions in the corner and main moorings were also 
examined, but for the wave and currents load case directions. 
The orientations of the mooring lines are shown in Fig. 8a 
and 8b. Main and corner tension value time series are shown 
in Fig. 10. For load case #1, both main corner tensions are 
provided, while only the corner mooring leg values are 
shown for load case #1. The basic statistics associated with 
the data sets are provided in Table 3.

While the intent of this study was to present analysis re-
sults, it is interesting to note that based on the failure of the 
system shown in the picture in Fig. 11, it is possible that 
anchor moorings were the weakest part of the system. The 
picture shows the farm wash-up on the shore, mostly intact, 
though heavily deformed. Since the numerical approach 
modeled the anchors as fixed points, with the anchor line 

tensions calculated, it can be determined at what tension the 
corresponding anchors will pull-out or slide depending upon 
the specific design used.

2. Structural stress of HDPE pipe 

It can be seen that the highest value of σeq
(max) = 181.24 MPa 

is found in one of the HDPE pipe beam elements. According 
to the tabular values, the yield stress of the HDPE, which 
means the predicted stress values are 7.55 times higher than 
allowable based on these calculations.

In addition to the calculations of equivalent stresses, in-
dividual stress components, σF

zz, σM
zz and σrθ corresponding  

Fig. 7. The boundary conditions for the HDPE pipe model.

Fig. 8. Model results were investigated for surface structure point 
movements (forward and aft) and corner and mooring line tensions in 
the load case #1 (a) and #2 (b) configurations.

(a)

(b)



Taeho Kim88

to the maximum values of axial force, equivalent bend-
ing moment. In these plots, black curves correspond to the 
normal stresses due to bending, red are the normal stresses 
due to axial forces and blue curves are shear stresses due to 
torque. According to the plots, the most significant contribu-
tion to the equivalent stresses comes from bending, which is 
consistent with the observed large deformations of the raft 

structure.
The left end of the pipe was fixed (both rotations and dis-

placements), the right end was also fixed except for the rota- 
tion around the pipes longitudinal axis. Forces and were ap-
plied (distributed over several nodes to avoid stress locali- 
zation) to produce maximum bending moments and in the 
middle of the pipe. Longitudinal force and torque were applied 

Fig. 9. Vertical time series results for the forward and aft points on the surface structure.

Fig. 10. Corner and main mooring leg time series for each load case directions.
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at the right end of the pipe. The resulting von Mises stress dis-
tribution is shown in Fig. 12.

According to the plots, the maximum von Mises stress 
observed is 181 MPa, which is within 1% of the analytically 
predicted value. This confirms that analytical calculations 

(which assume small deformations) are sufficient to predict 
maximum stresses even for a large deformation case under 
the considered loading conditions.

Conclusions

In this study, a numerical model of these abalone struc-
tures was built within a FEM and configured with two direc-
tional load cases that included irregular waves and currents 
that decreased exponentially in magnitude with depth. Model 
forcing was implemented in the code with a form of Morison 
equation to represent fluid-structure interactions. Mooring 
line tensions and structure motions were presented as part 
of this initial modeling procedure. The results showed that 
maximum mooring tension in load case #1 were on the main 
moorings (138 kN) and on the corner moorings for load case 
#2 (283 kN). The structural also showed wave following 
characteristics for each load case with reduced motion on the 
leading edge due to the mooring attachments. These results 
are presented considering that the anchors were modeled as 
fixed points. 

The loads from the fluid-structure interaction modeling 
were then used in another part of the modeling approach to 
calculate stresses in the primary components of the structure 
consisting of HDPE pipe. The results were then post-pro-
cessed to obtain equivalent (von Mises) stresses. The highest 
value was found to be 181 MPa, one of the HDPE pipe beam 
elements. According to the tabular values, the yield stress 
of the HDPE, which means the predicted stress values are 
7.55 times higher than allowable based on these calculations. 
Once again, these values were calculated based on the initial 
condition of fixed anchor points.

Qualitative information suggests that the anchors did in-
deed move so that the tensions in the mooring and stresses in 
the pipe may not have actually reached the levels presented 
in this study based on the fixed mooring configuration. The 
next step would be to fully analyze the individual mooring 
leg design configurations to perhaps included compliance 
with chain, compensator buoys, elastic line or other accept-
able technique.

Table 3. Tension response for load case #1 and #2

Parameter Max (kN) Mean (kN) Std (kN)

Load case #1

Corner 81.93 13.99 16.51

Main 137.80 26.97 27.42

Load case #2

Corner 282.71 65.79 60.88

Main - - -

Table 2. Characteristic motion response values for load case #1 and #2

Parameter
Max 

(m)
Min 

(m)
Std 

(m)
Normalized response 

(m/m)

Load case #1

Fwd point 1.64 -3.16 0.92 3.68/5.7 = 0.64

Aft point 3.60 -2.92 1.30 5.20/5.7 = 0.91

Load case #2

Fwd point 3.81 -2.87 1.34 5.34/5.7 = 0.94

Aft point 4.22 -2.87 1.42 5.69/5.7 = 1.00

Fig. 11. Abalone farm destruction as a result of a specific storm event 
(https://m.khan.co.kr/national/incident/article/201208282200045#c2b).

Fig. 12. von Mises stresses calculated with the FE model.

https://m.khan.co.kr/national/incident/article/201208282200045#c2b
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